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ABSTRACT

A hierarchical Bayesian framework is developed to identify multiple abrupt regime shifts in an extreme

event series. Specifically, extreme events are modeled as a Poisson process with a gamma-distributed rate.

Multiple candidate hypotheses are considered, under each of which there presumably exist a certain number

of abrupt shifts of the rate. A Bayesian network involving three layers—data, parameter, and hypothesis—is

formulated. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is developed to calculate

posterior probability for each hypothesis as well its associated within-hypothesis parameters. Based on the

proposed RJMCMC algorithm, a simulated example is designed to illustrate the effectiveness of the method.

Subsequently, the algorithm is applied to three real, rare event time series: the annual typhoon counts over the

western North Pacific (WNP), the annual extreme heavy rainfall event counts at the Honolulu airport, and

the annual heat wave frequency in the Chicago area. Results indicate that the typhoon activity over the WNP

is very likely to have undergone a decadal variation, with two change points occurring around 1972 and 1989

characterized by the active 1960–71 epoch, the inactive 1972–88 epoch, and the moderately active 1989–2006

epoch. For the extreme rainfall case, only one shift around 1970 is found and heavy rainfall frequency has

remained stationary since then. There is no evidence that the rate of the annual heat wave counts in the

Chicago area has had any abrupt change during the past 50 years.

1. Introduction

Extreme events are commonly perceived as events that

depart pronouncedly from the mean condition. Examples

of extreme events include winter storms, hurricanes, heavy

rainfall and associated floods, summer heat waves, and

freezing spells, to name a few. Because of their potential

to cause damage, their occurrences are naturally a mat-

ter of concern to the society or ecosystems. As climate is

changing, it is of great interest to explore whether there

is any pronounced change in the frequency and intensity

of extreme events from the past history. Abrupt changes

are characteristics of the climate systems. From local,

regional, or global perspectives, one of the scientific prob-

lems pertinent to our understanding of extreme events is

when the abrupt shift occurred and what is the likeli-

hood of its occurrence? In this study, we will address this

issue using an advanced statistical modeling approach

and apply it to three different kinds of extreme events,

namely, tropical cyclones over the western North Pa-

cific; heavy rainfall in Honolulu, Hawaii; and heat waves

in Chicago.

Tropical cyclones are one of the most destructive

natural catastrophes that recur frequently on the eastern

Asian coasts and the Pacific islands. Strong winds, tor-

rential rain, and coastal storm surges often lead to loss of

life and enormous property damage. For example, ty-

phoons Rusa in 2003 and Maemi in 2004 inflicted major

damage to Korea with a combined damage of more than

$10 billion. Heavy rainfall (not necessarily associated

with tropical cyclones) is another common extreme

event. In Hawaii, heavy rainfall events have often re-

sulted in damage to various sectors with considerable

economic loss (Chu et al. 2009). As the earth becomes
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warmer, it is expected that there are increasing episodes

of warm spells. It is well known that increasing mortality

results from hyperthermia and cardiovascular disease

during heat waves. In Chicago, a total of more than 700

deaths in 1995 were identified as heat related (http://

www.noaawatch.gov/themes/heat.php). Given the ob-

served evidence of warmer climate and the vulnerability

of our society to extreme events, it is natural to ask

whether there is any abrupt shift in the frequency of

their occurrences. Have typhoons, heavy rainfall, and

summer heat waves become more (or less) active in

recent years?

a. Background

The occurrence of rare events is commonly assumed to

follow a Poisson process (e.g., Elsner and Bossak 2001;

Briggs 2008; Khaliq et al. 2007). For the case of tropical

cyclones, Chu and Zhao (2004) developed a three-level

hierarchical Bayesian changepoint model, involving data,

parameter, and hypothesis layers. In their study, seasonal

tropical cyclone counts are represented by a hierarchical

Poisson process with gamma-distributed rates. When

dealing with this hierarchical model in Bayesian context,

it is often very difficult to analytically evaluate complex

integrals related to posterior distributions. One efficient

way to overcome such difficulty is through the use of

the Markov chain Monte Carlo (MCMC) method (e.g.,

Gamerman and Lopes 2006; Gilks et al. 1996; Gelman

et al. 2004). Applications of MCMC to climate research

are emerging. For instance, Berliner et al. (2000b) used

an MCMC approach to update distribution parameters

of their physically based statistical model for predicting

the Pacific sea surface temperatures. Elsner et al. (2004)

applied a MCMC approach to detect shifts in the At-

lantic major hurricane series. More recently, Zhao and

Chu (2006) extended the two-hypothesis hierarchical

model used in Chu and Zhao (2004) to a multihypothesis

hierarchical model and applied the MCMC approach to

detecting shifts in the annual hurricane counts in the

eastern North Pacific (ENP). They found that the ENP

hurricane series is marked by three regimes: the inactive

1972–81 epoch, the active 1982–98 epoch, and the qui-

escent 1999–2003 epoch. Zhao and Chu (2006) also de-

vised an empirical approach, called the informative prior

estimation (IPE) for setting appropriate prior of Poisson

rates, followed by framing it into the Bayesian model

competing analysis. As a result, they built a more ad-

vanced framework for detecting and quantifying multi-

ple (finite) shifts in a series of hurricane counts.

b. Why RJMCMC?

Although the MCMC imbedded with IPE method

(Zhao and Chu 2006) has been shown to be viable for

calculating the posterior probability for a multiple hy-

pothesis model, it suffers from a shortcoming. That is,

because parameter spaces within different hypotheses

are typically different from each other, a simulation has

to be run independently for each of the candidate hy-

potheses. If the hypotheses to be investigated have large

dimensions, this strategy is not efficient and is computa-

tionally prohibitive. In principle, a standard MCMC al-

gorithm is not appropriate for a model selection problem

because different candidate models or hypotheses usually

do not share the same parameter sets. To overcome this

problem, Green (1995) first introduced the reversible

jump Markov chain Monte Carlo (RJMCMC) algorithm

as a simultaneous integrative approach to deal with the

model selection problem.

The RJMCMC algorithm is so termed as to maintain

the detailed balance of an irreducible and aperiodic chain

that converges to the correct target measure. With the

introduction of an extra pseudorandom variable for each

investigated model, the dimension mismatching for a dif-

ferent model is well contained. Since the first introduc-

tion of the RJMCMC method, many others (e.g., Godsill

2001) have successfully applied and extended it to a broad

range of problems such as variable selection, curve fitting,

neural network, etc. One of its main real-world appli-

cations is on the detection of multiple structure or regime

changes in a physical process (e.g., Rotondi 2002). In this

study we shall explore a similar problem. Specifically,

based on the general RJMCMC framework, we shall de-

sign an algorithm to detect the potential multiple abrupt

shifts within an extreme event count series and quantify

them with proper probabilities.

This paper is organized as follows. Section 2 discusses

the datasets we used in this study. Section 3 outlines the

model for describing rare event count series. Section 4

briefly introduces the key concepts of RJMCMC method,

based on which a complete Bayesian analysis for de-

tecting multiple abrupt shifts is developed. Analysis re-

sults of a simulated time series and three real cases are

given in section 5. Section 6 provides the summary and

conclusions.

2. Data

Tropical cyclone data are from the Joint Typhoon

Warning Center in Honolulu, Hawaii. The study period

is 1960–2006. In this study, only supertyphoons are used,

which are defined as having maximum sustained 1-min

wind speed equal to or greater than 130 kt (66.9 m s21).

Historical daily rainfall records for the Honolulu Inter-

national Airport are obtained from the National Cli-

matic Data Center Web page. The data period extends

from 1949 to 2006. To define extreme rainfall events, we
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choose a specific threshold (99th percentile) of precipi-

tation days as heavy events (Chu et al. 2009). Here we

ignore days of no precipitation or days with precipitation

less than 0.01 in. (2.5 mm). For each year, we count the

number of events when the threshold is crossed. For

heat waves, we adopt the World Meteorological Orga-

nization definition. That is, daily maximum temperature

with more than five consecutive days exceeds the max-

imum temperature normal by 58C, where the normal is

the period 1961–90. Here Chicago O’Hare International

Airport is chosen because of its availability of long re-

cords and the infamous 1995 heat waves that led to large

number of heat-related deaths. This dataset extends

from 1959 to 2006.

3. Mathematical model of a seasonal rare event
count series

A Poisson process is a proper probability model for

describing independent, rare event counts (e.g., Wilks

2006). Given the rate parameter l, the probability mass

function (PMF) of h counts occurring in T unit seasons is

(Epstein 1985)

P(hjl, T) 5 exp(�lT)
(lT)h

h!
, where h 5 0, 1, 2, . . .

and l . 0, T . 0. (1)

The Poisson mean is the product of l and T; so is its

variance. Throughout this study, all of our cases are

annual count series; therefore we always set T 5 1 in (1).

In many real applications adopting the model (1), the

rate parameter l is treated as a random variable instead

of a constant to construct a hierarchical framework (e.g.,

Chu and Zhao 2004; Elsner and Jagger 2004). A func-

tional choice of the prior for l is its conjugate prior,

gamma distribution (Epstein 1985) that is formulated by

P(l; h9, T9) 5
T9h9lh9�1

G(h9)
exp(�lT9),

l . 0, h9 . 0, T9 . 0, (2)

where the gamma function is defined by G(x) 5Ð ‘

0 tx�1e�t dt. That is, given h counts occurring in T years,

if the prior density for l is gamma distributed with pa-

rameters h9 and T9, the resulted posterior density for

l is also gamma distributed with parameters h 1 h9 and

T 1 T9. Referring to Eq. (2), the prior expectation of l is

E[l] 5 h9/T9.

Under the statistical model introduced above, the mar-

ginal PMF of h counts occurring in T years when the in-

tensity is gamma distributed with prior parameters h9 and

T9 is a negative binomial distribution (Epstein 1985):

P(hjT; h9, T9) 5

ð‘

0

P(hjl, T)P(l; h9, T9) dl

5
G(h 1 h9)

G(h9)h!

T9

T 1 T9

� �h9
T

T 1 T9

� �h

5 P
nb

h; h9,
T9

T 1 T9

� �

, (3)

where h 5 0, 1, . . . , h9 . 0, T9 . 0, T . 0, and Pnb(�)
stands for negative binomial distribution.

4. RJMCMC approach to detecting multiple
change points in a rare event count series

a. MCMC method applied to Bayesian analysis

1) BASIC INFERENCE PROBLEM AND MCMC
METHOD

Let us assume u to be the set of the model parameters

under a given hypothesis, say H, and h to be the data for

analysis. The fundamental Bayesian model is governed

by the following mathematical expression:

P(ujh, H) 5
P(hju, H)P(ujH)

ð
P(hju, H)P(ujH) du

5
P(hju, H)P(ujH)

P(hjH)
} P(hju, H)P(ujH),

where } means proportional. Here, P(hju, H) is the

conditional distribution of the data h given the model

parameters u within hypothesis H (or the likelihood of

the parameters under hypothesis H) and P(ujH) is the

prior distribution of the parameters under hypothesis H.

Note that the term in the denominator, the marginal

distribution of the data P(hjH), is not dependent on u;

therefore it plays no role if we only focus on evaluating

the posterior probabilities of the parameters under hy-

pothesis H. However, in hypothesis or model selection

problems, this quantity becomes critical and it is known

as the evidence or the marginal likelihood. The Bayes

formula provides the posterior probability P(hju, H). To

make predictive inference, we rely on the posterior pre-

dictive distribution P(ĥjh, H) 5
Ð

P(ĥju, H )P(ujh, H ) du,

where ĥ denotes the prediction.

The MCMC method is one of the efficient algorithms

for calculating Bayesian inference. Under a hypothesis
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H (for simplicity, we will drop the notation of H in

the following derivation in this subsection), the general

Bayesian analysis method described above essentially

involves calculating the posterior expectation

E[ajh] 5

ð

u

a(u)P(ujh) du,

where a(u) can be any function of the within-hypothesis

parameter set u. This expectation, however, is usually

very difficult to integrate in most practical models. Al-

ternatively, a numerical way to calculate such an ex-

pectation is to use an MCMC algorithm by

E[ajh] ’
1

N
�
N

i51
a(u[i]).

Here, u[1], u[2], . . . , u[N] are sampled from a Markov

chain (MC) after its convergence, where the MC has

P(ujh) as its stationary distribution. This MCMC ap-

proach provides an unbiased estimate for E[ajh] (Ripley

1987).

2) RJMCMC APPROACH TO BAYESIAN

HYPOTHESIS SELECTION

Regular MCMC methods, such as a Gibbs sampler,

have been successfully applied to many real applications

(e.g., Zhao and Chu 2006). However, they are not ap-

propriate for a Bayesian model selection problem be-

cause different models usually do not share the same

model parameter set. Generally speaking, a RJMCMC

algorithm involves a Metropolis–Hastings-type algorithm

that moves a simulation analysis between different models

or hypotheses.

Suppose that candidate hypotheses are enumerable

and represented by the set H 5 fH0, H1, . . . , HK21g, we

denote the joint set of the parameters under hypothesis

Hk by uk, k 5 0, 1, . . . , K 2 1. We further introduce a

random vector uk, k 5 0, 1, . . . , K 2 1, such that for any

k9 5 0, 1, . . . , K 2 1, k9 6¼ k, the dimension of fuk, ukg
and fuk9, uk9g can be matched. Then we set uk9 to

be a deterministic function of uk and uk. For the re-

versible move, we propose a vector uk9 and set uk to

be a deterministic function of uk9 and uk9. Thus, there

must be a bijection between fuk, ukg and fuk9, uk9g,
which is defined by (uk9, uk9) 5 gk,k9(uk, uk). A general

RJMCMC algorithm (with given observation dataset h)

can be sketched as below (after initialization and assum-

ing that the current accepted hypothesis is Hk9):

1) Propose a visit to hypothesis Hk9, k9 6¼ k, with prob-

ability J(Hk / Hk9).

2) Sample uk from a proposal density Q(ukjHk, Hk9).

3) Set (uk9, uk9) 5 gk,k9(uk, uk).

4) Calculate the odds ratio r and accept Hk9 as the hy-

pothesis in the next iteration with the probability

‘‘min(1, r),’’ where

r 5
P(hju

k9
, H

k9
)P(u

k9
jH

k9
)P(H

k9
)J(H

k9
! H

k
)Q(u

k9
ju

k9
, H

k9
, H

k
)

P(hju
k
, H

k
)P(u

k
jH

k
)P(H

k
)J(H

k
! H

k9
)Q(u

k
ju

k
, H

k
, H

k9
)

›g
k,k9

(u
k
, u

k
)

›(u
k
, u

k
)

�
�
�
�

�
�
�
�. (4)

If Hk9 is rejected, we maintain the current hypoth-

esis Hk.

5) Return to the step 1 until the required number of

iterations is reached.

After a burn-in period, the number of times of a hy-

pothesis Hk accepted in the simulation (after step 4) di-

vided by the total number of iterations will be a good

estimation for the posterior probability of Hk, P(Hkjh).

Also, the samples from each iteration within the hy-

pothesis Hk will be equivalently drawn from the posterior

joint probability density function (PDF) P(ukjh, Hk).

In the general RJMCMC algorithm, the choice of

an appropriate proposal probability function Q(ukjuk,

Hk, Hk9) is critical for the efficiency of the algorithm.

Many papers have been addressing this issue (e.g., Ro-

tondi 2002). In the following subsections, we shall apply

this general RJMCMC framework to the problem on

detection of multiple abrupt shifts within a seasonal rare

event count series.

b. Hierarchical Bayesian model for extreme
event series

Let us assume that there are totally K possible can-

didate hypotheses fH0, H1, . . . , HK21g. Under each hy-

pothesis Hk, k 5 0, 1, . . . , K 2 1, there presumably exist

exactly k change points in this period. The following

derivations are based on the mathematical model de-

scribed in section 3 and we denote the parameter set

under hypothesis Hk by uk. Note that the annual ty-

phoon counts, h 5 [h1, h2, . . . , hn]9, are assumed to be

a series of independent random variables. The model of

hypothesis Hk, k 5 0, 1, . . . , K 2 1, is postulated below.

Hypothesis Hk: ‘‘A k changes of the rate’’ of the an-

nual typhoon series:

Assuming that t 5 [tk1, tk2, . . . , tkk]9 denotes the vector

of all k change points occurred in the time series h

under hypothesis Hk, where the element tk, j repre-

sents the first year of the jth epoch. We have the model
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h
i
; Poisson(h

i
jl

k1
, 1), if

i 5 t
k0

, t
k0

1 1, . . . , t
k1
� 1,

h
i
; Poisson(h

i
jl

k2
, 1), when

i 5 t
k1

, t
k1

1 1, . . . , t
k2
� 1,

. . .

h
i
; Poisson(h

i
jl

k,k11
, 1), when

i 5 t
kk

, t
kk

1 1, . . . , t
k,k11

� 1, where (5)

t
k0

, t
k1

, t
k2

, � � � , t
kk

, t
k,k11

, and

l
k1

; gamma(h9
k1

, T9
k1

),

l
k2

; gamma(h9
k2

, T9
k2

),

. . .

l
k,k11

; gamma(h9
k,k11

, T9
k,k11

).

In (5), tk0 5 1 and tk,k11 5 n 1 1 for all k; and the prior

knowledge of the hyperparameter set fh9
kj

, T9
kj
j j 5

1, 2, . . . , k 1 1; and k 5 0, 1, . . . , K � 1gmust be given

a priori. Note that, under hypothesis Hk, there are k 1 1

epochs separated by k change points tkj, j 5 1, . . . , k.

The jth change point is defined as the first year of the

( j 1 1)th epoch.

c. Prior specification

For the prior distribution of the parameter set uk un-

der hypothesis Hk defined in (5), the changepoint pa-

rameters are all uniformly (in order) distributed. It is,

however, not appropriate to use the noninformative prior

for the Poisson rate parameters. In a hypothesis selec-

tion problem, a flat noninformative prior usually does

not work well because it would almost always favor the

simplest hypothesis because of the extremely huge nor-

malization term for each rate parameter. As thoroughly

discussed in MacKay (2003), to fit a set of data by using

two different models, the posterior probability of the

complicated model is penalized by a stronger Occam’s

factor, which conceptually is the ratio of its parameters’

posterior and prior widths. Apparently, in model (5), a

noninformative prior for the rate will lead to infinite

prior width or, in other words, an infinitely small Oc-

cam’s factor. To make a sound model or hypothesis se-

lection, a reasonable informative prior for the model

parameter is therefore needed. For instance, Zhao and

Chu (2006) proposed an approach named IPE to em-

pirically estimate the hyperparameters h9kj and T9kj within

each candidate hypothesis. However, IPE involves an

extra pilot run for each investigated hypothesis. The

accuracy of IPE is also dependent on how well a gamma-

Poisson hierarchical model can explain the target time

series. Throughout this study, we instead assume that all

h9kj and T9kj in model (5) are equal to constant h9 and T9,

respectively. Berliner et al. (2000a) discussed the pos-

sibility of using additional information, independent

from the time series of interest, by assigning prior dis-

tributions. A procedure to fit the hyperprior parameters

for a rare event count series is briefly introduced as

follows.

With time series h 5 [h1, h2, . . . , hn]9, we run L in-

dependent iterations. Within the jth iteration, 1 # j # L,

first we randomly pick two different points from 1 to n,

say, k0 and k1(k0 , k1). Then we calculate the sample

mean of this batch of samples fhi, k0 # i # k1g, obtaining

a realization of the Poisson rate of this iteration, l[ j] 5

1/(k1 � k0 1 1)�k1

i5k0
hi. In the end, we obtain a set of

samples, fl[j], 1 # j # Lg. Empirically, we assume this

Poisson rate is gamma distributed with parameters h9

and T9. Via a moment estimation approach, an approxi-

mation of the hyperparameters h9 and T9 is given by

T9 5
m

l

s2
l

and h9 5 m
l * T9, where

m
l

5
1

L
�
L

j51
l[ j] and s2

l 5
1

L� 1
�
L

j51
(l[ j] �m

l
)2. (6)

In this study, after applying the above procedure to

several real-world rare event time series (such as sea-

sonal typhoon counts, seasonal heat wave counts, sea-

sonal heavy rainfall count, etc.), we suggest that, for T9,

any number around 10–25 should be a reasonable set-

ting. Throughout this paper, we fix T9 equal to 18.

Analogously, we determine a range for h9, and so we fix

h9 5 hT9, where h is the average value of the whole

time series h.

d. Extreme event count series analysis by
using RJMCMC

As discussed in section 4a, the key for efficiently ap-

plying a RJMCMC algorithm is to build an appropriate

proposal transition function. For this purpose, we fur-

ther assume that the hypothesis space defined in model

(5) follows a nested structure. In details, referring to step

2 of the general RJMCMC algorithm given in section 4a,

to move from the hypothesis Hk to the hypothesis Hk11,

we leave all change points and most rates under Hk

untouched and only introduce one new change point,

say, t. Without losing generality, we assume tkj , t ,

tk,j11, 0 # j # k. We then propose two new rate param-

eters for the period [tkj, t 2 1] and [t, tk,j11 2 1], re-

spectively, under the hypothesis Hk11, while discarding
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the old rate parameter lk,j11. Conversely, to move from

the hypothesis Hk11 to the hypothesis Hk, we randomly

pick one change point under Hk11, say, tk11,j, 1 # j #

k 1 1, and then merge the two phases separated by this

change point, while introducing a new rate lk,j for the

new phase [tk11,j21, tk11,j11 2 1] under the hypothesis

Hk. Simultaneously, we throw away the two old rate pa-

rameters and the chosen changepoint parameter. Appar-

ently, with this nested structure model, any two adjacent

hypotheses in (5) share most of their parameters.

For the hypothesis transition function J(H
k
! H

k9
),

we apply the restriction that any hypothesis can only

move to its adjacent hypothesis. A natural set for

this is

J(H
k
! H

k11
) 5 J(H

k
! H

k�1
) 5 0.5

if 0 , k , K � 1, and

J(H
0
! H

1
) 5 J(H

K�1
! H

K�2
) 5 1. (7)

As for the proposal probability Q in (4), generally speak-

ing, it is always preferred that it is close to the poste-

rior probability function of the proposed parameter set

under the new hypothesis. A precise estimation of the

posterior probability function often involves a pilot run.

Nonetheless, with the nested model suggested above,

a pilot period is not necessary as an analytical form is

available.

First, let us focus on the move from Hk to Hk11. As

we adopt a nested model, hypothesis Hk11 will retain

all k change points under hypothesis Hk. Therefore, this

move can be viewed as ‘‘birth’’ of a new change point.

Obviously, this ‘‘birth’’ move has the constraint that the

new change point cannot take any of the ‘‘existent’’

change points under Hk or the first point of the series,

which implies that it has only n 2 k 2 1 possible choices.

Hence, the noninformative prior for this new change

point is P(t) 5 1/(n 2 k 2 1). Without losing generosity,

we assume that this newly introduced change point t is

within the range [tkj, tk,j11 2 1], where j can be any in-

teger within the rage [0, k]. In formula, it is tkj , t ,

tk,j11. We then denote the two new rate parameters

to be l1 and l2 for the two new phases under Hk11, [tkj,

t 2 1], and [t, tk,j11 2 1], respectively. Given the new

change point t, the posterior PDFs for l1 and l2 under

the competing hypothesis Hk11 are their conjugate:

P(l
1
ju

k
, t) 5 gamma h9 1 �

t�1

i5t
k, j

h
i
, T9 1 t � t

k, j

0

@

1

A,

P(l
2
ju

k
, t) 5 gamma h9 1 �

t
k, j11�1

i5t

h
i
, T9 1 t

k, j11
� t

0

@

1

A
.

(8a)

As discussed for the general RJMCMC framework,

finding a probability function close to P(tjuk, h) under

Hk11 is therefore crucial for building an efficient pro-

posal function Qk,k11. Motivated by the conditional

posterior PMF of the new change point t under Hk11

(appendix A),

P(tju
k
, l

1
, l

2
, H

k11
, h) } e�(t�t

k, j
)(l1�l2) l

1

l
2

� � �
t�1

i5tk, j

h
i

,

we suggest a proposal function P(tjuk) by substituting

l1 and l2 in the formula above with their conditional

expectation obtained from (8a). It yields

P(tju
k
) } e�(t�t

k, j
)(l1�l2) l

1

l
2

 !�
t�1

i5tk, j

h
i

for

t 5 t
k, j

1 1, . . . , t
k, j11

� 1, where

l
1

5

h9 1 �
t�1

i5t
k, j

h
i

0

@

1

A
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We therefore have the proposal probability function

from Hk to Hk11:

Q
k,k11

(l
1
, l

2
, tju

k
) 5 P(l

1
ju

k
, t)P(l

2
ju

k
, t)P(tju

k
).

(8c)

In (8c), the probability functions P(l1juk, t), P(l2juk, t),

and P(tjuk) are calculated via (8a) and (8b).

Referring to (4), we also need to calculate the proposal

probability for the reverse move from hypothesis Hk11

to hypothesis Hk, in which we need to propose a new

rate, denoted by l, for the period [tkj, tk,j11 2 1] under

Hk or, equivalently, [tk11,j, tk11,j12 2 1] under Hk11.

The posterior PDF for l under Hk is its conjugate:

Q
k11,k

(lju
k11

)

5 gamma h9 1 �
t

k11, j12�1

i5t
k11, j

h
i
, T9 1 t

k11, j12
� t

k11, j

0

@

1

A. (9)

We then can draw l from (9).

Referring to step 3 in the general RJMCMC algo-

rithm, the bijection function is the identity mapping,

which implies that Jacobian determinant term is equal
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to 1. The likelihood term can be found in appendix B.

Thus, after the overlapped parts between two hypothe-

ses are canceled out with each other, the ratio in (4) is

simplified to (assuming tkj , t , tk,j11)

r
k,k11

5
e�[l1(t�t

kj
)1l2(t

k, j11�t)]
l

�
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. (10a)

In (10a), P(l), P(l1), and P(l2) are all gamma dis-

tributed with hyperparameters h9 and T9, where h9 and

T9 are obtained through the procedure described in

section 4c [Eq. (6)]; P(t) 5 1/(n 2 k 2 1); hypothesis

transition probability J is defined in (7); proposal func-

tions Qk11,k(ljuk11) and Qk,k11(l1, l2, tjuk) are given

in (9) and (8c), respectively. The derivation of the like-

lihood within each hypothesis is found in appendix B.

For the reverse move from hypothesis Hk11 to hypothesis

Hk, we simply execute the opposite transition from Hk to

Hk11. That is, we shall merge two adjacent periods under

Hk11 into one period with this move, which can be viewed

as ‘‘death’’ of a change point under hypothesis Hk11.

Without losing generosity, assume the ‘‘dead’’ change

point to be tk11,j for any applicable j. We thus first sample

a new rate l 5 lk,j via (9) for the new merged phase,

[tk11,j21, tk11, j11 2 1] (or equivalently [tkj, tk,j11 2 1]

under hypothesis Hk). For the switch back, we sample l1,

l2, and t from (8a) and (8b), respectively, within this newly

merged period. As a ‘‘death’’ move is exactly the reverse of

its ‘‘birth’’ counterpart, the acceptance ratio for this move

simply takes the inverse of the form in (10a). That is,
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(10b)

Replacing the ratio calculation equation in (4) with (10a)

and (10b), the general RJMCMC algorithm provided in

section 4a yields the proposed algorithm ad hoc designed

for multiple changepoint detection within an extreme event

count series. In real practice, for both (10a) and (10b), we

further assume a noninformative prior for all candidate

hypotheses. That, is all hypotheses have equal probability

before analyzing the target series. That is, P(Hk) 5 1/K

is a constant for k 5 0, 1, . . . , K 2 1. The prior term for

hypothesis in (10a) and (10b) is thereby canceled out.

5. Results

In this study, we assume that there are at most nine

change points, that is, K 5 10. For each of the following

examples, the length of the burn-in period is 2000 and the

number of iterations of the RJMCMC algorithm after the

burn-in period is chosen as 10 000. To test the convergence

of RJMCMC simulation chains, we apply the diagnostic

software Bayesian Output Analysis (BOA; Smith 2007).

a. A simulated example

To test the validity and effectiveness of the proposed

RJMCMC method, a simulated example was elaborately

designed. We first generated a time series with gamma

distribution. There are 500 points of the series in total.

The first 150 points were generated from a gamma(3, 1); the

next 150 points were generated from a gamma(5, 1); the

following 100 points were generated from a gamma(9, 3);

the last 100 points were generated from a gamma(3, 0.5).

With this series as the seed of the rate, we generate a

Poisson-distributed time series. Obviously, with this gen-

erative model, there should be four independent epochs,

which are separated by three change points with the

sample index 151, 301, and 401, respectively. Figure 1a

illustrates this simulated series.

After applying the RJMCMC method described in the

preceding section to this series, the outputs for the

posterior probability of 10 candidate hypotheses are

demonstrated in Fig. 1b. The probability for hypothesis
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H3 is as high as 0.82 and the Bayes factor between H3

and all other hypotheses is equal to 4.6, suggesting H3 is

the dominant winner. Under hypothesis H3, the poste-

rior PMFs for three change points are illustrated in Figs.

1c, 1f, and 1i, respectively, from which we see the algo-

rithm precisely catches the prescribed abrupt shifts. We

also plotted the posterior PDFs of the Poisson rates for

each independent epoch in Figs. 1d, 1e, 1g, and 1h, re-

spectively. For this simulated example, very satisfying

results were obtained as expected.

b. Three real-world examples

Now let us turn our attention to modeling the actual

climate records. This includes three cases: the annual

supertyphoon counts over the western North Pacific

(WNP); the annual extreme heavy rainfall counts at

Honolulu International Airport; and the annual heat

wave counts in Chicago’s O’Hare International Airport.

To estimate the p value associated with a rate shift un-

der a given hypothesis, we calculate the total number of

samples that are against the presumed rate shift trend

and divide this number to the total number of iterations

under this hypothesis that are accepted by the RJMCMC

algorithm (after burn-in period).

1) ANNUAL SUPERTYPHOON COUNTS IN

THE WNP

Figure 2a shows the time series of annual typhoon

count series over the WNP from 1960 to 2006. After

applying the same procedure as described in the first

FIG. 1. Plots for the simulated example. (a) Time series. (b) Posterior probability for all the candidate hypotheses. (c) Posterior PMF for

the first change point. (d) Posterior PDF of the Poisson rate for the first epoch. (e) Posterior PDF of the Poisson rate for the second epoch.

(f) Posterior PMF for the second change point. (g) Posterior PDF of the Poisson rate for the third epoch. (h) Posterior PDF of the Poisson

rate for the forth epoch. (i) Posterior PMF for the third change point.
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example, the outputs for the posterior probability of 10

candidate hypotheses are plotted in Fig. 2e. The proba-

bility for hypothesis H2 is as high as 0.39, which is higher

than that for hypothesis H3 (0.24). We therefore choose

H2 as the winning hypothesis. Under hypothesis H2, the

marginal posterior PMF for the two change points are

depicted in Figs. 2c and 2d, respectively, through which

one can see that by far the most likely choice for the first

change point is 1972 and for the second change point is

1989. Using a method of running medians, Yumoto and

Matsuura (2001) analyzed the annual tropical cyclone

(TC) records in the western North Pacific. They identi-

fied 1961–72 as an active epoch, followed by an inactive

epoch of 1973–85 and another active epoch of 1986–94.

They attributed this regime shift to the corresponding

interdecadal variability in the atmospheric and oceanic

conditions in the subtropical western North Pacific. In-

terestingly, our study also independently confirms a phase

shift occurring around 1972. However, besides provid-

ing a more rigorous and advanced method in detecting

change points, our study reveals the likelihood of the

regime shift in any year and the posterior probability of

each hypothesis, which are unavailable in Yumoto and

Matsuura (2001).

The posterior PDF for the rates of each epoch, along

with the universal prior, are collaboratively demon-

strated in Fig. 2b. The average rate prior to 1972 is about

5.67 supertyphoons yr21 and decreases to about 2.35

supertyphoons yr21 from 1972 to 1988, then it increases

to 5.00 supertyphoons yr21 thereafter. The p values for

the both shifts are all very small (0.054 for the first and

0.059 for the second), which strongly implies the ex-

istence of these two change points in this storm time

series.

The Bayes factor between H2 and H3 is 1.61, which only

shows slight evidence in favor of H2 over H3. However,

FIG. 2. Plots for the case of supertyphoon counts series. (a) Time series. (b) Posterior PDFs for the rates of each epoch. (c) Posterior

PMF for the first change point. (d) Posterior PMF for the second change point. (e) Posterior probability for all the candidate

hypotheses.
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we observe that, under H3, based on the obtained change-

point samples, besides the two shifts (1972 and 1989)

identified under H2, the third most probable change

point is 1987, which is very close to 1989. In summary, we

suspect that there are two regime shifts that occurred

within this series: one was around the early 1970s and the

other was around late 1980s.

2) ANNUAL EXTREME HEAVY RAINFALL COUNTS

AT HONOLULU INTERNATIONAL AIRPORT

Figure 3a shows the time series of the annual extreme

heavy rainfall count series observed in Honolulu In-

ternational Airport from 1950 to 2006. We applied the

same procedure described in the last example to this

series, and the outputs for the posterior probability of

10 candidate hypotheses are plotted in Fig. 3b. The prob-

ability for hypothesis H1 is 0.36, which is higher than that

for hypothesis H2 (0.26) or hypothesis H0 (0.19). We

therefore chose H1 as the winning hypothesis. Under

hypothesis H1, the marginal posterior PMF for the only

change point is plotted in Fig. 3d, through which one

can see that the decreasing shift more likely happened

around 1970.

The posterior PDF for the rates of each epoch, along

with the universal prior, are all shown in Fig. 3c. The

average rate prior to 1970 is about 1.40 times yr21 and is

almost halved to 0.70 times yr21 since then. The p value

for the shift is 0.096, which supports the existence of this

change point in this time series. Since the Bayes factor

between H1 and H2 is only 1.40, based on Jeffreys’ cri-

terion, this change point needs further investigation to

confirm.

3) ANNUAL HEAT WAVE COUNTS IN

CHICAGO AREA

Figure 4a shows the time series of the annual extreme

heavy rainfall count series observed in O’Hare airport

from 1959 to 2006. The output for the posterior proba-

bility of 10 candidate hypotheses is plotted in Fig. 4c.

The probability for hypothesis H0 is 0.34, which is

slightly higher than that for hypothesis H1 (0.31). Under

hypothesis H0, the posterior PDF for the rate through

FIG. 3. Plots for the case of extreme rainfall counts series. (a) Time series. (b) Posterior probability for all the

candidate hypotheses. (c) Posterior PDFs for the rates of both epochs. (d) Posterior PMF for the change point.
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the period, along with its prior, are drawn in Fig. 4c. The

average rate of this series is about 4.33 times yr21.

Since the Bayes factor of H0, H1 over all other hy-

potheses is 1.84, we exclude those higher dimensional

hypotheses. With our further analysis on the samples

drawn within iterations under H1, we find that the pos-

terior PMF for the only change point under H1 is almost

like a uniform distribution. We thus claim that no change

point exists within this time series.

6. Summary

As the earth’s climate is changing, the frequency in

extreme events is expected to change accordingly. Hence,

developing a state-of-the-art method to objectively iden-

tify the turnaround of such changes is an initial vital step

for a more comprehensive scientific analysis. With the

benefit of knowing when a regime shift has occurred, this

knowledge would enable one to compare active and

inactive epochs of climate states for future diagnostic

and modeling studies (e.g., Chu 2002; Deser et al. 2004).

Traditionally, rates for seasonal extreme event counts

have been modeled in a data-parameter two-layer hi-

erarchical Bayesian framework. In this view, the rates

are assumed to be invariant throughout the time. A few

studies respectively provided different Bayesian ap-

proaches to detecting and quantifying potential abrupt

shifts in an extreme event series (e.g., Elsner et al.

2004; Zhao and Chu 2006) by treating the Poisson rate

a random variable. However, each of them has some

limitations as we have discussed in the introduction

section.

A general 3-layer—including data, parameter, and

hypothesis—hierarchical Bayesian model with a nested

hypothesis space is built in this study. Seasonal extreme

event count series is modeled as a Poisson process with

a gamma-distributed rate. We consider multiple candi-

date hypotheses, within each of which there presumably

exist a certain number of abrupt shifts of the Poisson

rate. Because of the inability of a regular MCMC algo-

rithm for a model selection problem, we resort to its

extended version, the RJMCMC algorithm. Following

the guideline of the general RJMCMC method, we

designed an algorithm to automatically calculate the

FIG. 4. Plots for the case of heat wave counts series. (a) Time series. (b) Posterior probability for all the candidate

hypotheses. (c) Posterior PDF for this period.
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Bayesian inference of the 3-layer Bayesian model for

efficiently solving the hypothesis competition problem.

A simulated example was designed to illustrate the

effectiveness and consistency of the proposed RJMCMC

method, and satisfying results were obtained. Subse-

quently, the algorithm was applied to three examples of

extreme event series: the annual supertyphoon counts

over the WNP, the extremely heavy rainfall counts in

Honolulu airport, and the annual heat wave counts in

Chicago area. The results indicate that typhoon activity

over the WNP is very likely to have undergone a decadal

variation with two change points occurring around 1972

and 1989; the average supertyphoon rate is 5.67 yr21

during the active 1960–71 epoch, drops to 2.35 yr21 dur-

ing the inactive 1972–88 epoch, and then goes up to

5.00 yr21 from 1989 to 2006. The extreme rainfall oc-

currence frequency in Honolulu airport may have had

a decreasing shift in around 1969 and it has remained

stationary since then; there is no evidence that the rate of

the annual heat wave counts in Chicago area has had any

significant variation within the past half century.

One cautionary note is that the mathematical models

and computer codes developed here are based on the

extreme event series, which are assumed to follow a Pois-

son process with a nonconstant rate. Because of this as-

sumption, the algorithm presented in this study is not

applicable to the nonrare event series. To apply the pro-

posed algorithm in real practice, it is necessary to check

the independency of the tested time series. A simple way

is to calculate the autocorrelation function and then

compare the output correlation coefficients to a threshold

value. Furthermore, after running the algorithm, for those

slightly significant change points (say Bayes factor smaller

than 2), it may be necessary to check other relevant me-

teorological phenomena to confirm their existence. To

make this algorithm be more general, on a side note, be-

sides checking the target time series’ independency, it

would be also helpful to test if it has any significant period

by using a frequency analysis tool, such as harmonic

analysis. How to properly model the series embedded with

an oscillation feature, however, is beyond the scope of this

study.
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APPENDIX A

Derivation of P(tjuk, l1, l2, h) within
Hypothesis Hk11

Let h 5 [h1, h2, . . . , hn] and presumably tkj , t , tk,j11,

j 2 f0, . . . , kg. With the assumed nested structure, it

implies tk,j 5 tk11,j , t 5 tk11,j11 , tk,j11 5 tk11,j12.

Therefore, the likelihood for the data before the change

point tk11,j and after the change point tk11,j12 does not

contain any information of t. With model (5), we have the

likelihood function for the dataset:
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Since P(t) is assumed to be uniformly distributed, we have
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In (A2), we simply replace the parameter index within Hk11 in (A1) by the relative parameter index within Hk.
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APPENDIX B

Derivation of Likelihood P(hjuk, Hk) k 5 0, 1, . . . ,
K 2 1

We have
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Therefore,
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APPENDIX C

Software Availability

The MATLAB code developed based on this paper,

as well the relative help documents, can be downloaded

from the corresponding author’s homepage (http://

lumahai.soest.hawaii.edu/Hsco/chu-index.html).

REFERENCES

Berliner, L. M., R. A. Levine, and D. J. Shea, 2000a: Bayesian

climate change assessment. J. Climate, 13, 3805–3820.

——, C. K. Wilke, and N. Cressie, 2000b: Long-lead prediction of

Pacific SSTs via Bayesian dynamic modeling. J. Climate, 13,
3953–3968.

Briggs, W. M., 2008: On the changes in number and intensity of

North Atlantic tropical cyclones. J. Climate, 21, 1387–1402.

Chu, P.-S., 2002: Large-scale circulation features associated with

decadal variations of tropical cyclone activity over the central

North Pacific. J. Climate, 15, 2678–2689.

——, and X. Zhao, 2004: Bayesian changepoint analysis of tropical

cyclone activity: The central North Pacific case. J. Climate, 17,

4893–4901.

——, ——, M. Grubbs, and Y. Ruan, 2009: Extreme rainfall events in

the Hawaiian Islands. J. Appl. Meteor. Climatol., 48, 502–516.

Deser, C. A., S. Philips, and J. W. Hurrell, 2004: Pacific inter-

decadal climate variability: Linkages between the tropics and

the North Pacific during boreal winter since 1900. J. Climate,

17, 3109–3124.

Elsner, J. B., and B. H. Bossak, 2001: Bayesian analysis of U.S.

hurricane climate. J. Climate, 14, 4341–4350.

——, and T. H. Jagger, 2004: A hierarchical Bayesian approach to

seasonal hurricane modeling. J. Climate, 17, 2813–2827.

——, X. Niu, and T. H. Jagger, 2004: Detecting shifts in hurricane

rates using a Markov chain Monte Carlo approach. J. Climate,

17, 2652–2666.

Epstein, E. S., 1985: Statistical Inference and Prediction in Clima-

tology: A Bayesian Approach. Meteor. Monogr., No. 42, Amer.

Meteor. Soc., 199 pp.

Gamerman, D., and H. F. Lopes, 2006: Markov Chain Monte

Carlo—Stochastic Simulation for Bayesian Inference. 2nd ed.

Chapman & Hall/CRC, 323 pp.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2004:

Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, 668 pp.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1996: Markov

Chain Monte Carlo in Practice. Chapman & Hall/CRC, 486 pp.

Godsill, S. J., 2001: On the relationship between Markov chain

Monte Carlo methods for model uncertainty. J. Comput.

Graph. Stat., 10, 1–19.

Green, P., 1995: Reversible jump Markov chain Monte Carlo

computation and Bayesian model determination. Biometrika,

82, 711–732.

Khaliq, M. N., T. B. M. J. Ouarda, A. St.-Hilaire, and P. Gachon,

2007: Bayesian changepoint analysis of heat spell occurrences

in Montreal, Canada. Int. J. Climatol., 27, 805–818.

MacKay, D. J. C., 2003: Information Theory, Inference, and Learn-

ing Algorithms. Cambridge University Press, 628 pp.

Ripley, B. D., 1987: Stochastic Simulation. John Wiley, 237 pp.

Rotondi, R., 2002: On the influence of the proposal distributions

on a reversible jump MCMC algorithm applied to the de-

tection of multiple changepoints. Comput. Stat. Data Anal.,

40, 633–653.

Smith, B. J., cited 2007: Bayesian Output Analysis Program

(BOA), version 1.1.5 for R. Department of Biostatistics,

School of Public Health, University of Iowa. [Available online

at http://www.public-health.uiowa.edu/boa/.]

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. Academic Press, 627 pp.

Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of

tropical cyclone activity in the western North Pacific. J. Me-

teor. Soc. Japan, 79, 23–35.

Zhao, X., and P.-S. Chu, 2006: Bayesian multiple changepoint

analysis of hurricane activity in the eastern North Pacific:

A Markov chain Monte Carlo approach. J. Climate, 19,

564–578.

1046 J O U R N A L O F C L I M A T E VOLUME 23


